Importance of aerosol composition and mixing state for cloud droplet activation over the Arctic pack ice in summer

نویسنده

  • C. Leck
چکیده

Concentrations of cloud condensation nuclei (CCN) were measured throughout an expedition by icebreaker around the central Arctic Ocean, including a 3 week ice drift operation at 87 N, from 3 August to 9 September 2008. In agreement with previous observations in the area and season, median daily CCN concentrations at 0.2 % water vapour supersaturation (SS) were typically in the range of 15 to 30 cm, but concentrations varied by 2 to 3 orders of magnitude over the expedition and were occasionally below 1 cm. The CCN concentrations were highest near the ice edge and fell by a factor of 3 in the first 48 h of transport from the open sea into the pack ice region. For longer transport times they increased again, indicating a local source over the pack ice, suggested to be polymer gels, via drops injected into the air by bubbles bursting on open leads. We inferred the properties of the unexplained non-water soluble aerosol fraction that was necessary for reproducing the observed concentrations of CCN. This was made possible by assuming Köhler theory and simulating the cloud nucleation process using a Lagrangian adiabatic air parcel model that solves the kinetic formulation for condensation of water on size resolved aerosol particles. We propose that the portion of the internally/externally mixed water insoluble particles was larger in the corresponding smaller aerosol size ranges. These particles were physically and chemically behaving as polymer gels: the interaction of the hydrophilic and hydrophobic entities on the structures of polymer gels during cloud droplet activation would at first only show a partial wetting character and only weak hygroscopic growth. Given time, a high CCN activation efficiency is achieved, which is promoted by the hydrophilicity or surface-active properties of the gels. Thus the result in this study argues that the behaviour of the high Arctic aerosol in CCN-counters operating at water vapour SSs > 0.4 % (high relative humidities) may not be properly explained by conventional Köhler theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of black carbon mixing state on black carbon nucleation scavenging: Insights from a particle-resolved model

[1] This paper presents an advancement of the recently developed particle-resolved aerosol model PartMC-MOSAIC (Particle Monte Carlo-Model for Simulating Aerosol Interactions and Chemistry) to investigate the impacts of mixing state on cloud droplet formation and to provide a tool for the quantification of errors in cloud properties introduced by simplifying mixing state assumptions. We coupled...

متن کامل

On the potential contribution of open lead particle emissions to the central Arctic aerosol concentration

We present direct eddy covariance measurements of aerosol number fluxes, dominated by sub-50 nm particles, at the edge of an ice floe drifting in the central Arctic Ocean. The measurements were made during the ice-breaker borne ASCOS (Arctic Summer Cloud Ocean Study) expedition in August 2008 between 2–10 W longitude and 87–87.5 N latitude. The median aerosol transfer velocities over different ...

متن کامل

A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation

With the global aerosol-climate model ECHAM5HAM we investigate the potential influence of organic aerosol originating from the ocean on aerosol mass and chemical composition and the droplet concentration and size of marine clouds. We present sensitivity simulations in which the uptake of organic matter in the marine aerosol is prescribed for each aerosol mode with varying organic mass and mixin...

متن کامل

Hygroscopicity and composition of Alaskan Arctic CCN during April 2008

We present a comprehensive characterization of cloud condensation nuclei (CCN) sampled in the Alaskan Arctic during the 2008 Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project, a component of the POLARCAT and International Polar Year (IPY) initiatives. Four distinct air mass types were sampled including a cleaner Arctic background and a relatively pristine sea ice...

متن کامل

Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

The double-moment cloud microphysics scheme from ECHAM4 that predicts both the mass mixing ratios and number concentrations of cloud droplets and ice crystals has been coupled to the size-resolved aerosol scheme ECHAM5HAM. ECHAM5-HAM predicts the aerosol mass, number concentrations and mixing state. The simulated liquid, ice and total water content and the cloud droplet and ice crystal number c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015